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A term structure model that produces realistic scenarios of future interest rates is 
critical to the effective measurement of counterparty credit exposures. Scenarios are 
realistic when observed interest rates and actual exposures over time are consistent 
with the predicted distribution of interest rates and potential exposures. In this paper, 
we present a statistical term structure model with mean reversion. The model can be 
extended to term structures in several markets. A case study is used to explore the 
calibration, application and out-of-sample testing of the model in practice. The out-of-
sample validation covers large, unanticipated changes in interest rates. In the case 
study, the model performs well in the estimation of potential exposures over longer 
time periods. The model may underestimate exposures in the short-term when shocks 
occur in the beginning of the out-of-sample testing period.
Financial institutions manage the credit risk of 

derivative portfolios by assigning credit lines to 

each counterparty name. Counterparty credit 

exposures measure the utilization of these credit 

lines at the counterparty level. Credit exposure 

is defined as the cost of replacing all contracts 

with a given counterparty at the time of default. 

Since default is an uncertain event that can 

occur at any time during the lives of the 

contracts, actual exposures to each counterparty 

today and potential changes in exposures over 

time must be managed. (Aziz and Charupat 

(1998) provide formal definitions for actual and 

potential exposures.) The ongoing management 

of credit lines can be effective only when 

potential exposures for the entire lives of the 

contracts are estimated correctly today, 

particularly in the case of derivative portfolios. 

Potential exposures are frequently determined 

from a simulation of risk factors, such as interest 

rates, foreign exchange rates and equity prices. In 

the case of derivatives such as swaps, swaptions, 

caps or floors, the simulation typically covers 10 

years or more. A term structure model that 

produces realistic scenarios of future interest 

rates is the foundation for the correct estimation 

of exposures. Scenarios are realistic when the 

distribution of future interest rates is close to the 

distribution of historical rates. 

We present a statistical model with mean 
reversion for the evolution of the term structure 

of interest rates. The objective of this paper is to 

illustrate the practical implementation issues 

associated with calibrating, applying and testing 

the model. 

A case study is used to explore these issues. The 
model is used to create scenarios on future rates 

that are then used to calculate the potential 

exposure of a test portfolio of swaps, swaptions, 

caps and floors. The scenarios are meaningful if 

they lead to accurate estimates of potential 
exposure. The model is calibrated to US 

Constant Maturity Treasury yields in a historical 

calibration period (January 1, 1984 to December 

31, 1990). A second (non-overlapping) historical 
period (January 3, 1991 to December 31, 1998) is 

designated as the out-of-sample testing period. 

The out-of-sample test investigates whether the 

calibrated model produces realistic and 

meaningful interest rate scenarios by comparing 
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the distribution of interest rates predicted by the 

calibration model to the historical outcome, and 

by comparing the potential exposures of the test 

portfolio based on these scenarios to the 

historical exposures realized in the validation 
period. Because changes in interest rates affect 

the exposures of long and short derivative 

positions differently, we also test the mirror image 

of the portfolio to investigate the sensitivity of 
both sides of the position. 

The model is applied to determine the evolution 
of a single term structure. The Asset Block 

Decomposition technique (Reimers and Zerbs 

1998) can be applied to extend the model to 

term structures in several markets. Using this 

decomposition, each term structure is defined as 
an asset block. A reduced set of principal 

components is defined for each asset block; the 

covariances between the components of paired 

blocks then link the components’ movements.

The paper is organized as follows. We begin by 

describing the proposed term structure model 
and the calibration methodology. Next, we 

present the case study, beginning with the 

calibration results, followed by the results of the 

out-of-sample test. We close with an evaluation 

of the results and implications for further 
research.

A simulation model for interest rates

The basic elements of a long-term interest rate 
simulation model are a model for the joint 
fluctuations in the rates and some device to 
maintain the distributions of rates within bounds 

from the current time , until the horizon time, 

T. A mean-reverting process is generally used to 
ensure that distributions remain bounded as time 
passes. 

We assume that the term structure of interest 
rates is described by n rates. We further assume 
that joint movements of the logarithms of the n 
rates occur only within a k-dimensional subset of 
the n-dimensional directions, where k is smaller 
than n and the n directions are independent. A 
number of factor analysis techniques can be used 
to determine this subset of directions. In this 
paper, the directions are determined by Principal 
Component Analysis. 

Let the term structure of interest rates be defined 

by a set of discrete rates, . We 

assume that as time evolves, each rate  reverts 

to a target value , which remains constant 

over time. Let  and . 

We assume there are k independent state 

variables, ,  that explain the 

movements of the log rates, . Each state 

variable follows an Ornstein-Uhlenbeck process 

(Karatzas and Shreve 1994): 

 (1)

where  specifies the mean-reversion speed,  

specifies the instantaneous volatility and dzj 

represents a random fluctuation of the associated 
state variable, specifically, a Brownian motion. 

The volatilities and the mean-reversion rates are 

constant through time.

The log rates are reconstructed by

 (2)

where B = [bij]. The columns, , of the matrix 

B are orthonormal vectors. Here, the columns of 
B are the first k principal components of the 

changes in log rates. 

The individual rates are given by

 (3)

Note that Equations 1 to 3 bear some 

resemblance to the Black-Karasinski model for 

derivatives pricing (Black and Karasinski 1991). 
The most evident differences are that this model 

is based on several principal components, the 

short rate plays no special role and the model is 

“market describing” rather than “market fitting” 
(Rebonato 1996, p. 337). Because it is not fitted 

to today’s term structure of interest rates or 

implied volatilities, the model is not a no-

arbitrage pricing model as are the Hull-White 

(Hull and White 1990) or Heath-Jarrow-Morton 
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(Heath et al. 1989) approaches. A market price 

quoted today cannot be recovered from the 

model, however, the pricing of derivatives is not a 

modeling objective here. The model also differs 

from most equilibrium models in that it is not 
derived from a stylized version of the economy as 

are the Cox-Ingersoll-Ross (Cox et al. 1985) or 

Longstaff-Schwartz (Longstaff and Schwartz 

1992) models. 

An important feature of the interest rate model 

described in Equations 1 to 3 is that the variance 

of all market rates at all future times, , 

can be calculated by a closed formula. The 

variance of the state variable xj at time t is

 (4)

Therefore, the variance of the market rate yi at 

time t is 

 (5)

Since the distribution of each log rate is normal, 

quantiles for both the log rates, , and hence for 

the rates, , can be determined for all t. 

Calibration

The interest rate simulation model (Equations 1 

to 3) is completely specified when the significant 

principal components and thus the state 

variables xj and the matrix B
 

are determined, 

when values for the mean-reversion parameters 

 and variances  associated with those state 

variables are established and when a target value 

 for each node i on the term structure is set. 

The purpose of the model calibration is to 

estimate these values. 

Calibration methodology

We describe a calibration methodology that relies 

on historical data. The starting point for the 

calibration is historical observations for each 
interest rate ri over the calibration period. The 

calibration period [to, T] is divided into M equally 

distributed observations denoted by 

. The historical observations for 

each interest rate are referred to as . This 

time series of historical interest rates is 

transformed into a time series of log rates, ,

using Equation 3. The target values, , are 

calculated as the sample means of the log rates 

over the calibration period: 

 (6)

Equation 3 then determines  given .

The state variables xj and the matrix B are the 

result of a Principal Component Analysis. 

Defining the elements of B as the principal 

components of changes in the log rates yi ensures 

that the state variables are independent of each 
other. 

The historical values for the state variable  over 

time are referred to as implied state variable 

histories, . As before, m indexes the 

observations in the calibration period [to, T]. 

Because the columns of the matrix  are 

orthonormal vectors, Equation 2 can be 

rewritten as 

 (7)

A proof is presented in the Appendix. 

Given , we obtain a time series of state 

variable changes,  according to 

 (8)
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estimated directly as a sample variance from the 

state variable changes :

 (9)

We can conclude the calibration by first 
estimating the sample variance of state variable 

levels from the implied state variable histories 

, using this as an approximation for  

in Equation 4, then solving Equation 4 to obtain 

the mean-reversion parameters .

Calibration results

In this section we present the results of the model 

calibration, including the determination of the 

principal components, the mean-reversion 
parameter and the target.

The calibration period [to, T] is the seven-year 

period from January 1, 1984 to December 31, 

1990. Historical data for US Constant Maturity 
Treasury Yields (US Federal Reserve Board 1999) 

is used in the calibration. The term structure is 

defined by nine key rates: three and six months, 

one, two, three, five, seven, 10 and 30 years. 

Tenors shorter than three months are omitted 
because their high volatility makes Principal 

Component Analysis problematic. 

Principal Component Analysis

The first three principal components (PC) of the 

daily log rates over the term structure are 

depicted in Figure 1and summarized in Table 1.

 Figure 1: Principal components of daily log rates

The first principal component of the daily log 

rates represents an (almost) parallel shift of the 

yield curve. The long rates in the US term 

structure have lower volatilities than the short 

rates, and hence their loadings on this “shift” 

component are slightly lower. The second 

principal component represents a “twist” of the 

yield curve; the long rates move against the short 

rates. The third component represents a 

“butterfly” movement; the two-, three- and 5-

year rates move against both the long and the 

short end of the curve.

Table 2 presents the distribution among the first 

three principal components of the variance of all 

nine log rates during the calibration period. The 

first principal component explains 93.03% of the 

total variance, and together, the first three 

components explain 99.89% of the total variance 

of the daily log rates.

Accordingly, we conclude that during the 

calibration period, three principal components 

are sufficient to describe the variance of the daily 

log rates. Thus, these three principal components 

become the three state variables of the model, 

 and the entries of Table 1 are the values 

of the matrix B. 
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Terms PC 1 PC 2 PC 3

3mo 0.3626 –0.49378 0.60272

6mo 0.3743 –0.39229 0.10857

1yr 0.3798 –0.26574 –0.40852

2yr 0.3585 –0.02328 –0.41570

3yr 0.3434 0.08809 –0.33622

5yr 0.3178 0.25442 –0.02507

7yr 0.2993 0.33271 0.09108

10yr 0.2835 0.38263 0.15922

30yr 0.2585 0.44893 0.37140

Table 1: Principal components of the daily log 
rates 

k 3=
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Mean-reversion parameter

The time series of daily changes for the state 

variables identified in the Principal Component 

Analysis, , calculated according to 

Equation 8, are shown in Figure 2. The implied 
history for the shift component peaks shortly 

after the start of the calibration period, then 

decreases in the first half of the calibration period 

and resumes a weak upward trend for the second 

half of the period. The second and third 
components oscillate around the target.

 Figure 2: Histories of state variable changes 

over the calibration period

The mean-reversion rates are set to zero and the 

variances of the state variable daily changes, , 

calculated according to Equation 9. 

The iterative calibration methodology is applied 

to determine the mean-reversion rates given the 

variances of the principal components. The 

resulting estimates of annualized mean-reversion 

rates for each principal component are presented 

in Table 3. The first two mean-reversion rates are 

deemed to be close enough to zero to accept; the 

third is different than zero, but the impact of the 

third principal component is not significant. 

Thus, all three estimates are adopted.

Target

The target values for the testing period, , are 

calculated as the sample means of the log rates 

over the calibration period according to 

Equation 6. 

Out-of-sample testing

The calibrated model is used to generate 

scenarios over an out-of-sample, historical 

testing period from January 3, 1991 to 

December 31, 1998. The actual and potential 

exposures for a test portfolio of swaps, swaptions, 

caps and floors are estimated based on these 

scenarios. 

Historical data for US Constant Maturity 

Treasury Yields (US Federal Reserve Board 1999) 

is used in the testing. The term structure for the 

actual rates and the target rates are shown in 

Figure 3. Actual rates range from 6.66% in the 

short end to 8.14% in the long end of the curve. 

The target curve resulting from the calibration is 

more than 100 basis points higher than the 

actual curve in early 1991.

Principal 

Component

Percentage 

of total 

variance

Cumulative 

percentage of 

total variance

PC 1 93.03 93.03

PC 2 6.56 99.59

PC 3 0.30 99.89

Table 2: Distribution of variance of daily log 

rates,  (%)σj
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PC 1 0.001
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Table 3: Estimated annualized mean-reversion 
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 Figure 3: Actual Treasury and target curves

The scenarios generated are validated using a 

three-phase test. First, the distribution of the 
interest rates predicted by the calibrated model is 

compared to the historical outcome of interest 

rates observed in the out-of-sample testing period 

to determine if the model provides realistic 
scenarios.

Next, an out-of-sample test is performed to 

determine the ability of the model to generate 

meaningful scenarios that lead to reasonable 

estimates of potential exposure. The scenarios 

generated by the calibrated model are used to 
compute future values for all positions in a test 

portfolio, under each scenario at each time step. 

The distribution of these Mark-to-Future values 

is used to compute worst-case potential 
exposures at the 95% confidence level, over the 

out-of-sample period. The worst case potential 

exposures result in an envelope of potential 

exposures. The historical actual exposures 

realized during the out-of-sample testing period 
are compared to the estimated envelope of 

potential exposures. If the scenarios generated 

fall outside of the envelope, the model is likely 

inappropriate. 

Finally, because the impact of a change in rates 
affects the exposure of long and short derivative 

positions differently, the exposures of the mirror 

image of the portfolio are studied to test the 

sensitivities of both sides of the positions. 

Testing the scenarios generated 

A preliminary test of the realism of the model 

compares the interest rates actually observed 

through the out-of-sample testing period with 

the distribution predicted by the calibrated 

model. 

A convenient summary of the distribution at any 

time is the central 95% inclusion range. 

Equation 4 is used to calculate the 2.5th and 

97.5th percentiles of the distribution of the 
interest rates at each point in time. The curves 

created by linking these forecasts through time 

define the inclusion envelope. 

Example results are presented in Figure 4 which 

shows the historic values and the lower bound of 

the 95% inclusion envelope for the 30-year rates. 

Results for other rates are similar. Note that the 
historic rates are generally greater than the lower 

bound of the envelope. For all nine rates, the 

historical data falls outside the 95% inclusion 

envelope for the calibrated model on 7.7% of 

days observed, indicating that the scenarios 
generated by the model are realistic. 

 Figure 4: Historic rates and the lower bound of 

the 95% envelope for the 30-year rate

Testing potential exposures

The exposure functions of derivative portfolios 

are non-linear across scenarios and over time. 

Hence, a study of exposures on a test portfolio of 
interest rate derivatives may yield different 

results than a test of the interest rate scenarios 

themselves.

The test portfolio comprises at-the-money fixed-

floating swaps covering a range of tenors from 

one to 10 years, a swaption on a 10-year bond, 

and several long term caps and floors that are at-

Time (days)

R
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e
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)
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the-money (ATM), out-of-the-money (OTM), 

and far out-of-the money. These positions are 

designed to be sensitive to very large interest rate 

movements. The portfolio is constructed to have 

exposures that are partially offsetting. All 
positions are denominated in USD, have a 

notional amount of 100 million USD and all are 

priced using the same term structure (Figure 3). 

The portfolio is held by a single counterparty. To 
allow for full close-out netting, all positions are 

subject to the same master agreement. A detailed 

description of the portfolio holdings is given in 

Table 4.

Equations 1 to 3 are used to generate 1,000 

scenario paths over time for the three state 

variables identified in the calibration period. The 

paths reach seven years into the future, with 

quarterly time steps in the first year, and semi-

annual time steps thereafter. 

In each scenario and at each time step, the future 

value of each position is computed and placed in 

a table of Mark-to-Future values. The values are 

aggregated at the portfolio level. Figure 5 
illustrates the evolution of the mean of the Mark-

to-Future values and of the upper and lower 

limits of the range between which the Mark-to-

Future values fall with 95% confidence.

Given the Mark-to-Future values, we calculate 
potential exposure under each scenario and 

compare the predicted distribution with the 

actual historical outcomes in the out-of-sample 

testing period. The mean potential exposure, the 

portfolio exposure at the 95% confidence level 

Name Position 
Fixed Coupon / Strike

(interest rate p.a.)
Maturity (days) Value (USD)

Cap (ATM) 1 7.50 3653 4,904,552

Cap (far OTM) –1 11.00 3653 –477,731

Cap (OTM) –1 9.00 3653 –1,848,424

Floor (ATM) 1 7.10 3653 2,661,553

Floor (far 

OTM)

–1 5.43 3653 –193,317

Floor (OTM) –1 6.20 3653 –686,447

Swaption 

(10yr)

1 7.95 90 1,091,133

1y swap –1.8 7.00 365 –80,955

2y swap 1 7.20 731 –78,341

3y swap –1.55 7.40 1096 69,727

5y swap 1 7.68 1826 23,312

7y swap –2 7.90 2557 –93,044

10y swap 1 7.95 3653 41,878

Portfolio Total N/A N/A N/A 5,333,895

Table 4: Portfolio holdings
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and the actual exposure of the portfolio are 

shown in Figure 6. Note that only non-negative 

Mark-to-Future values contribute to potential 

exposure. The portfolio exposure doubles from 10 

million USD at the beginning of the simulation 
to more than 20 million USD near the end of the 

simulation. The estimated potential exposure of 

the portfolio consistently dominates its actual 

exposure.

 Figure 5: Portfolio Mark-to-Future values

 Figure 6: Out-of-sample test of potential 

exposures

Table 5 presents actual exposures as a percentage 

of potential exposures at the 95% confidence 

level for each position. There is only one excess 

exposure: the actual exposure of the 2-year swap 

exceeds the potential exposure by 12% at the one 
year point. The results for caps and floors are 

presented in the aggregate; there are no excess 

exposures. At the portfolio level, actual portfolio 

Future time (m/d/y)

Name 4/1/91 7/1/91 1/2/92 1/4/93 1/3/94 1/3/95 1/3/96 1/3/97 1/3/98 1/3/99

Caps 53 45 14 7 2 10 0 1 0 0

Floors 86 61 96 63 66 23 42 38 50 68

Swaption 

(10y)

4

1y swap 0

2y swap 10 52 112

3y swap 0 0 0 0 0

5y swap 0 14 86 57 61 12 72

7y swap 1 0 0 0 0 0 0 0

10y swap 0 3 63 41 54 4 56 27 36 50

Portfolio 

Total

10 0 0 0 0 0 14 8 24 19

Table 5: Actual versus potential exposures (%)
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exposures reach a peak of 24% of potential 

exposures in 1998. These results offer evidence 

that the model generates realistic estimates of 

worst case exposures.

The results summarized in Table 5 indicate that 

actual exposures as a percentage of potential 
exposures for short positions, such as the 7-year 

swap, are much lower than those for long 

positions, such as the 10-year swap.Testing both 

sides of a position 

To assess whether the results of the test change if 

the long and short positions in the portfolio are 
reversed, we apply the calculations in the out-of-

sample test to the original portfolio and its mirror 

image. Specifically, we compare the envelope of 

Mark-to-Future values at the 95% confidence 

level to the absolute value of the actual outcomes 
over time. Figure 7 graphs the results for the 

aggregated portfolio. Actual outcomes exceed 

the lower tail at the first three time points. At all 

subsequent points, actual outcomes are well 
within the envelope.

 Figure 7: Portfolio Mark-to-Future values

To facilitate the review of the extended out-of-

sample test at the position level, we define three 

supporting measures:

• Envelope of differences: the difference 
between the position’s median Mark-to-

Future value and its potential future value at 

the 97.5th or 2.5th percentile at each time 

step. 

• Actual difference: the difference between 

the position’s actual market value and the 

median of its Mark-to-Future values at each 

time step.

• Envelope utilization: the absolute value of 

the position’s actual difference, expressed as 

a percentage of its envelope of differences.

An envelope utilization of more than 100% 

indicates that actual market values exceed Mark-

to-Future values at the 95% envelope. As we test 

for envelope utilizations of more than 100% at 

the upper and lower percentile, we also account 

for situations where long and short positions are 

reversed. 

Table 6 presents the envelope utilizations for 

each position and for the entire portfolio over the 

out-of-sample test period. Outcomes outside the 

95% envelope are highlighted in light grey. 

Outcomes that also fall outside the 99% 

envelope are highlighted in dark grey. 

At the position level, about 10% of the outcomes 

(8/75) fall outside the 95% envelope. The 

envelope utilizations exceed 100% for the floors, 

for the short-dated swaps and for the entire 

portfolio. Excess utilizations at the position level 

are restricted to the first four steps of the out-of-

sample test. Four out of eight excesses also 

exceed the 99th percentile, but all four fall in the 

first time step. 

Are the observed excess utilizations consistent 

with the actual interest rates for the period 1991 

to 1993? Money market rates fell by more than 

70 basis points in the first three months of 1991. 

By 1992 rates had dropped by more than 250 

basis points in the short end and by about 100 

basis points in the long end. This steep decline in 

interest rates contrasts with a target curve that is 

above the market rates on the valuation date 

(Figure 3)! The calibrated model does not 

produce scenarios that reflect these extreme rate 

changes in the first year of the simulation. 

Hence, we should expect some excess envelope 

utilizations in the out-of-sample test. 
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Short-dated swaps are sensitive only to changes 

in the short end of the yield curve. We also 

expect that unrealized gains and losses in the 

short positions in the out-of-the-money floors 

change rapidly as these positions become at-the-

money or in-the-money options. It follows that a 

sharp decline in interest rates affects these 

holdings more than it affects the caps or the long-

dated swaps. Our tests show that even a small 

error in forecasting the values of the risk factors 

can lead to a large error in forecasting the 

exposure associated with a position. As these 

positions are designed to be sensitive to very 

large interest rate movements, we are not 

surprised to observe that about 10% of potential 

exposures fall outside of the envelope, while only 

8% of the forecasted interest rates fall outside the 

envelope.

Nevertheless, these results are encouraging. The 

out-of-sample testing period covers a dramatic 

fall in interest rates between 1991 and 1992 and 

a dramatic increase in rates between 1994 and 

1995. In spite of this, actual exposures at the 

portfolio level are always less than estimated 

potential exposures (Table 5). Outcomes that are 

outside the envelope are limited to the first four 

time steps of the out-of-sample test, regardless of 

whether the position is long or short. The case 
study also illustrates that portfolio offsets reduce 

the potential for actual exposures to exceed 

estimated worst case exposures (Table 6).

Conclusions

We have presented a statistical model for 
generating interest rate scenarios over time. The 

objective of the model is the estimation of 

counterparty exposures. The model provides a 

concise description of interest rate dynamics and 
is calibrated easily to historical data. It can be 

extended to term structures in different markets. 

To test whether the model can be used in the 
effective management of potential credit 

exposures, we have calibrated the model to US 

rates and performed an out-of-sample test on the 

scenarios and exposures generated by the model. 

We observe that

Future Time (m/d/y)

Position 4/1/91 7/1/91 1/2/92 1/4/93 1/3/94 1/3/95 1/3/96 1/3/97 1/3/98 1/3/99

Caps 10 16 58 62 19 45 26 42 54 59

Floors 200 176 138 135 43 8 77 36 23 33

Swaption 

10y

91 14 59 39 53 7 5 33 45 65

1y swap 62 404 930 - - - - - - -

2y swap 14 21 119 - - - - - - -

3y swap 3 8 110 41 - - - - - -

5y swap 8 12 84 54 57 7 38 - - -

7y swap 7 13 69 44 58 10 60 18 - -

10y swap 7 14 59 39 53 7 57 33 45 65

Portfolio 

Total

196 112 142 70 5 7 23 30 50 47

Table 6: Envelope utilizations (%)
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• The model performs well when estimating 

potential exposures over longer time periods 

that include extreme market moves such as 

the sudden rise in interest rates in 1994.

• The model may underestimate exposures for 

the short-term when extreme market moves 
occur in the beginning of the out-of-sample 

testing period.

• Portfolio offsets tend to mitigate the severity 

of exposure excesses.

• The potential exposure of the test portfolio is 

congruent with the distribution of interest 

rate scenarios.

Useful further work would include the 

calibration and out-of-sample testing of the 
model for other term structures, testing for 

sensitivity to the model parameters and 

calibration assumptions and a comparison of the 

results to those derived from other models. 
Proper backtesting of long-term simulations in 

general and of credit risk in particular is 

problematic because of the quantity of time series 

data required. Further work might also include 

investigation of backtesting methodologies.
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Appendix

Rewriting Equation 2 in vector notation

 (A1)

Equation A1 is pre-multiplied by column vector 

, where  indexes any column of B, 

: 

Because the columns of B are orthonormal

Therefore,
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