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Real options theory is an increasingly popular tool for valuing physical assets such 
as power generation plants. In this paper, we describe a model for power plant 
valuation that accounts for such important operating characteristics as minimum 
on- and off-times, ramp time, nonconstant heat rates, response rate and 
minimum electricity dispatch level. The power plant values and optimal operating 
policies are obtained by employing stochastic dynamic programming. Sample 
numerical results, using electricity price data from the New England power pool, 
show that operating constraints can have a significant impact on power plant 
values and optimal operating policies.
Deregulation of energy markets has dramatically 
changed the environment in which many power 
generation asset owners operate. In particular, 
utilities have become increasingly exposed to 
extremely volatile energy prices. Mismanagement 
of this risk exposure, even for an efficient power 
producer, may have a severe impact on its 
financial position.

The real options approach applies derivative 
pricing theory to the analysis of options 
opportunities in real assets (Dixit and 
Pindyck 1994). Unlike traditional discounted 
cash-flow analysis, real options theory explicitly 
accounts for flexibility in the manner in which an 
asset is developed and operated, often leading to 
higher asset values, as well as different optimal 
capacity planning and operating decisions. For 
example, accounting for different plant 
construction lead times in the face of demand 
uncertainty can lead to significantly different 
optimal capacity planning strategies (Gardner 
and Rogers 1999).

Valuing a power plant using real options theory 
has two main purposes in competitive markets. 
First, an investor who contemplates the purchase 
or sale of a power plant must accurately 
determine its value. The second purpose is to 
facilitate the use of risk management tools 
developed for financial markets in order to hedge 
both asset value and earnings. For example, a 
power plant can be hedged using forward 
electricity contracts (Eydeland and 
Geman 1998). In fact, much current trading 
activity in commodity derivatives is for precisely 
this purpose.

Ignoring non-fuel operating costs, the net profit 

per hour for a power plant is , where 

q is the dispatch (or output) level (MW), is 

the spot price of electricity ($/MWh),  is the 
spot price of input fuel ($/MMBtu), and H is the 
plant heat rate (MMBtu input fuel per MWh 

electricity). The quantity  is 
commonly referred to as the spark spread since it 
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Valuation of power generation assets
gives the difference between the price of 
electricity and the input fuel cost (expressed in
$/MWh). If the spark spread is positive, the 
optimal dispatch level is full capacity; otherwise, 
the plant should not be run. The instantaneous 
plant pay-off per unit capacity is thus

 

which is equivalent to an option to exchange one 

asset with price  for another with price . 
If it is assumed that the prices of electricity and 
fuel at some time in the future are lognormally 
distributed, then this option may be valued using 
Margrabe’s exchange option formula 
(Margrabe 1978), an approach which is now 
widely used (Deng et al. 1998).

Given a set of available generating units, the 
lowest cost method to meet a power delivery 
commitment is via merit order loading: each 
unit is loaded to capacity in order of ascending 
operating cost until the required amount of 
power is made available. Plants with low-input 
costs (“baseload” generation) thus typically 
operate most of the year, while plants with high-
input costs (“peakers”) may be operated only a 
small fraction of time. In general, an optimal 
system design will include a mix of baseload, 
midload and peaking generation. 

From an options perspective, baseload 
generation is normally an “in-the-money” option 
since the required electricity price at which it can 
be profitably operated is low. Peaking 
generation, on the other hand, is normally an 
“out-of-the-money” option since a high 
electricity price is required for profitable 
operation. 

While the exchange option approach is useful 
from a conceptual perspective, it fails to account 
for some important plant operating 
characteristics that may affect plant value and 
the optimal operating policy:

• Minimum on (up) and off (down) times. 
These are imposed in order to limit the 
physical unit damage due to fatigue. 

• Minimum ramp (start-up) time. Some time 
is required between the decision to turn on a 
unit and the time at which it is able to 

deliver power. In steam-powered generation 
units, for example, time is required to heat 
the boiler.

• Minimum generation level. Most units have 
some minimum level below which they 
cannot operate.

• Response rate constraints. Some time is 
required to effect a discrete change in the 
generation dispatch level.

• Non-constant heat rate. The heat rate of 
units normally varies with the generation 
level.

• Variable start-up cost. The cost of starting a 
unit may depend on the time spent off-line. 
For steam-powered units, for example, the 
boiler temperature declines with time spent 
off-line, increasing the cost to restart the 
unit.

When these operating characteristics are taken 
into account, the decision to turn on or off the 
plant depends not only on the market prices of 
electricity and fuel but also on the plant 
operating state, making the valuation problem 
path dependent. Johnson et al. (1999) provide 
results from a model that takes plant operating 
characteristics into account, but do not describe 
the underlying model. Tseng and Barz (1999) use 
Monte Carlo methods adapted to American 
options pricing. While their methodology is 
capable of describing most plant operating 
characteristics, it is computationally inefficient. 
Takriti et al. (2000) describe an efficient 
computational approach for determining the 
optimal dispatch of multiple plants under load 
and price uncertainty. However, the 
representation of uncertainty in the results they 
report is simplified for computational reasons. 

This paper describes how stochastic dynamic 
programming can be used to calculate plant 
values and optimal operating policies while 
considering plant operating characteristics. 
Specifically, we first develop a lattice for the 
underlying stochastic variables. We then use 
backward dynamic programming to compute the 
plant value and optimal operating policy. The 
methodology is very similar to that proposed by 
Hull and White (1993) for path-dependent 
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Valuation of power generation assets
options or, in the context of energy derivatives, 
to the method discussed by Thompson (1994) 
and Jaillet et al. (1999) for swing options. 
Although this paper focuses on power generation 
plants, the same methods may also be applied to 
the valuation of other real assets such as energy 
pipelines and storage facilities. Finally, we should 
note that, in some markets, generation asset 
owners may have additional means of generating 
revenue (such as providing ancillary services) 
that may be significant (see Griffes et al. (1999) 
for a discussion); we do not consider these here.

The remainder of the paper is organized as 
follows. The next section describes the 
mathematical model, followed by a discussion of 
the solution method. This is followed by an 
application of the model, using data from the 
New England power pool. In this section, we 
investigate the effect of the operating 
constraints, electricity price volatility and the 
expected spark spread on the value of a power 
plant and optimal operating policies. The final 
section concludes with some thoughts on the 
benefits and application of real options theory in 
practice.

Model description

We focus on valuing thermal power units over a 
short-term horizon (e.g., one week). Plant values 
over a longer time horizon may be estimated by 
appropriately prorating the plant value from a 
number of representative subperiods.

Without loss of generality, we assume that 
operating decisions are made at hourly intervals 
t = 0, 1, ...,T. To model the plant characteristics 
described above, we introduce the notation 
summarized in Table 1.

Operating state constraints
To model the constraints on minimum on-, off- 
and ramp times, we introduce a state variable s 
representing the operating state of the plant. A 
state is a combination of a plant’s condition and 
the duration in that condition. The total number 
of possible plant states is equal to the sum of the 
minimum on-, cool-down, minimum off- and 
ramp times. Hence, s is a number between one 
and , which implies that the 
number of states depends on the plant operating 
characteristics. Within this range, the plant 
condition may be described as shown in Table 2.

Constraints on plant state transitions may be 
represented graphically via a state transition 
diagram. Figure 1 represents possible states 
(indicated by circles) and state transitions

Parameter Description Units

ton minimum up time hours

toff minimum down time hours

tcold additional time over 
the minimum down 
time after which the 
unit start-up cost is 
constant 

hours 

tramp time required to 
bring the unit on-line

hours

qmin minimum dispatch 
level

MW

qmax maximum dispatch 
level

MW

H(q) heat rate as a func-
tion of plant output q 

MMBtus/
MWh

Table 1: Summary of notation

toff tcold tramp ton+ + +

Plant Condition States

Off-line

Ramp (unable to sell power)

On-line

Table 2: Plant operating states

1 s toff tcold+≤ ≤

toff tcold+ s< toff tcold tramp+ +≤

toff tcold tramp+ + s< toff tcold tramp ton+ + +≤
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Valuation of power generation assets
(arrows between circles) for a power plant with a 
minimum on-time of two hours (ton = 2), 
minimum off-time of two hours (toff = 2), extra 
cool-down time of two hours (tcold = 2) and a 
ramp time of one hour (tramp = 1). Each state is 
defined by the plant condition (off-line, ramp or 
on-line) and the duration of time in that 
condition.

 Figure 1: Feasible operating state transitions

State 1 represents a plant that has just gone off-
line; given the minimum off-time restriction, the 
only possible transition one hour hence is to 
State 2, representing a plant that has been off-
line for one hour. From State 2, a plant may 
either remain off-line (State 3) or start up 
(State 5), since one hour hence it will have been 
off-line for two hours. Similarly, from States 3 
(off-line for two hours) and 4 (off-line for three 
or more hours), a plant may either remain off-
line (State 4) or start up (State 5). States 3 and 4 
are introduced only to model variable start-up 
costs, discussed later. Note that a plant cannot 
go directly from an off-line state to the on-line 
state due to the ramp time of one hour. Once 
started (State 5), a plant must go on-line 
(State 6); in this state, power may be produced 
for sale. A plant that has just gone on-line 
(State 6) must stay on-line, hence moving to 
State 7 (on-line for one or more hours), due to 
the minimum two-hour on-time restriction. 
Once in State 7, the plant can remain there or go 
off-line (State 1).

In the general case, feasible state transitions from 
State s at time t to State  at time t + 1 may be 
represented mathematically as follows: 

which may be denoted more compactly simply as 
. The first case in this expression 

(corresponding to States 2 and 3 in the above 
example) shows that a plant that has been off-
line for longer than the minimum off-time may 
either turn on or stay off, in which case it 
proceeds to the next off-line state. The second 
case (corresponding to State 4 in the above 
example) says that a plant that is currently in the 
final off-line state (off-line three or more hours) 
may either startup or remain in that state. The 
third case (corresponding to State 7 in the above 
example) shows that a plant that has been on for 
more than the minimum on-time may either turn 
off or stay on. The fourth case indicates that, in 
any other state (States 1, 5 and 6 in the above 
example), the plant must proceed to the next 
operating state.

Price processes
A key input to the model is the description of the 
price processes for fuel and electricity. Discrete 
time, discrete state price processes may be 
obtained as an approximation to continuous 
price processes. Let represent the set of 

energy price states possible at time step t, and  

and  be the spot price of electricity ($/MWh) 
and the spot price of fuel ($/MMBtu), 
respectively, at time t in energy Price State j .

As an example of how a price process may be 
represented, suppose the spot price of electricity 
follows a mean-reverting geometric Brownian 
motion process:

where  is a drift parameter,  is the mean 

reversion rate,  is the volatility and  is 
the increment of a Brownian motion. A trinomial 
lattice may be used to represent this process, 
following the approach described by Clewlow and 

Off-line

Plant Condition

Ramp

On-line

Duration (Hours)

Minimum on-time: two hours
Minimum off-time: two hours
Start-up time: one hour
Extra cool-down time: two hours

1 32 4

5

6 7

0                     1                     2                3

s ′

s ′

toff tcold 1+ + s 1+{ , } toff s toff tcold+<≤

toff tcold 1+ + s{ , } s = toff t+
cold

1 s{ , } s = toff t+
cold

tramp ton+ +

s 1+{ } otherwise�
�
�
�
�
�
�
�
�

∈
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F
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Valuation of power generation assets
Strickland (1999), which involves the 
determination of the price states at each time 
step and the associated price-state transition 
probabilities. As part of this procedure, the drift 

term  is made time dependent, in order that 
the lattice may be calibrated to an observed 
forward price curve and, hence, describes the 
risk-adjusted price process required for pricing 
derivatives. This approach may be viewed as an 
extension of the Hull and White (1994a) 
methodology for creating lattices for short-rate 
interest rate models.

To allow fuel prices to be stochastic in addition 
to electricity prices, a number of techniques are 
available for construction of two-factor lattices 
(see, for example, Hull and White (1994b)). 
Alternatively, if the plant heat rate is assumed to 
be constant, it is possible to model the process 
followed by the spark spread directly.

Costs and revenues

Each operating state has an associated cost or 
revenue. While these may be quite general, we 
assume here that they take the form 

Thus, there is a fixed cost in all states. In the 
on-line states, revenue equal to the product of 
the plant dispatch q and the spark spread is 
received.

In addition to costs and revenues associated with 
different operating states, there may be a 
transition cost associated with operating 
state transitions. We assume here the following 
functional form for the transition cost of moving 
from State s to State :

where c1, c2 and c3 are non-negative constants. 
Thus, the cost of starting up a plant is an 
increasing function of the time spent off-line and 
the prevailing fuel price. 

Dispatch and response rate constraints
Since the plant can only produce power in an on-
line state and the output level is bounded, the 
following constraints are satisfied in the absence 
of response rate constraints:

  

Dispatch levels, q, satisfying these constraints are 
denoted . Note that these constraints 
impose no restriction on how fast a plant can 
change its dispatch level: if it is on-line, it can be 
dispatched at any level between the minimum 
and maximum output levels.

To model response rate constraints, we discretize 
the possible plant dispatch levels and then add 
the plant dispatch level as a third dimension to 
the state descriptor (in addition to plant 
condition and duration). The state transition 
constraints and dispatch constraints must also be 
appropriately modified. To illustrate the steps 
required, we extend the previous example.

Suppose that changing the dispatch level from 
the minimum to the maximum dispatch level 
(and vice versa) may be achieved in a minimum 
of one hour. In this case, the modified state 
transition diagram may be represented as in 
Figure 2. In this figure, States 6 and 7 have been 
redefined as being on-line at the minimum 
dispatch level. An extra state (State 8) has also 
been added, defined as being on-line for one or 
more hours and being dispatched at the 
maximum dispatch level. From State 6, it is 
possible to stay on-line at either the minimum or 
maximum dispatch levels (States 7 and 8, 
respectively). From State 7, it is possible to go 
off-line, or stay on-line at either the minimum or 
maximum dispatch level. From State 8, it is 
possible to stay on-line at either the minimum or 
maximum dispatch level; we have assumed it is 
not possible to go directly to the off-line state 
from the maximum dispatch level. Similarly, we 

uE

fjt q s,( ) =

Kfix – 1 s toff tcold tramp+ +≤ ≤

q Pjt
E( H q( )Pjt

F ) Kfix–– otherwise
�
�
�
�
�

Kfix

g s s′,( )

s ′

gjt s s ′,( ) =

Pjt
F c1 1 e

c– 2 s toff–( )
–

� �
� � c3+

� �
� � s ′  = toff t+

cold
1+

0 otherwise�
�
�
�
�

q = 0 if  sε 1 … t, , off t+
cold

tstartup+
� 	
� 

� �

qmin q qmax≤ ≤ otherwise

q B s( )∈
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Valuation of power generation assets
have assumed that it is not possible to go from 
the ramp condition (State 5) to the maximum 
dispatch level directly.

 Figure 2: Feasible operating state transitions 
with response rate constraints

Solution method
To obtain the plant value together with the 
optimal operating policy, we employ stochastic 
(or probabilistic) dynamic programming (see 
Wagner (1975) for an introduction). Dynamic 
programming is a standard technique for solving 
optimization problems that may be formulated in 
a set of stages or time periods. An optimal policy 
with n stages (or periods) remaining may be 
determined by selecting the policy that 
maximizes the sum of net revenue in stage n plus 
the expected net revenue in the subsequent n – 1 
remaining stages.

The optimal policy for this problem is found by 
solving

 (1)

where Fjt(s) denotes the value of the power plant 
over the period t to T, conditional on being in 
energy Price State j at time t and operating 

State s; represents the probability of moving 

from Price State j at time t to Price State at 
time t + 1. 

Equation 1 states that the value of the power 
plant over the remaining stages (i.e., from time t 
to T) is the sum of two terms. The first term is 
the net revenue in period t. We choose the 
optimal plant output level q to maximize the net 
revenue, subject to the plant operating 
constraints B(s). The second term is the 
expected value of the power plant from time 
t + 1 to T, which is conditional on the plant 
operating state at time t + 1. We select the 
operating State that results in the maximum 
plant value (net the state transition cost), 
conditional on the requirement that it is a 
feasible transition from State s. This 
maximization determines the optimal operating 
state transition policy for the plant. This optimal 
state transition policy is a generalized version of 
the optimal exercise boundary that is obtained as 
part of the valuation of American-style options.

The plant value at time 0 is obtained by solving 
Equation 1 recursively, working backward from 
time T for all possible Price States  and 

operating States , to time 0 (which has only 
a single known price state).  then 
represents the value of the plant over the entire 
period, conditional on being in State s at time 
t = 0.

In addition to plant value, a key output of the 
solution procedure is the optimal operating 
policy which consists of the optimal plant output 
in each on-line state as a function of price state 
and time, and the optimal state transition 
strategy as a function of the current operating 
state, price state and time. The optimal operating 
policy should be used by plant operators to 
maximize the plant value—operating the plant 
using a different operating policy is, by definition, 
suboptimal and, hence, will result in a lower 
plant value.

Typically, the optimal state transition strategy 
may be expressed in terms of a set of exercise 
boundaries. For example, if the current plant 
state is on-line, the optimal transition in the next 
period will be to remain on-line for all values of 
the spark spread greater than a certain critical 
value and to go off-line (assuming this is a 
feasible transition) for all spark spreads that are 
less. Given the cyclical variation in electricity 

1Off-line

Ramp

On-line

32 4

5

6 7

Duration (Hours)

0                     1                    2                3
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Valuation of power generation assets
prices over time, this critical value will also vary 
through time.

To illustrate the methodology, we consider the 
following simple example. Consider the valuation 
of a one-MW capacity plant that has a minimum 
on-time of two hours, a minimum off-time of one 
hour, and no start-up or cool-down time. We also 
assume there are no fixed or start-up costs. The 
state transition diagram for this plant is shown in 
Figure 3. We assume the plant’s heat rate is 
constant for all levels of output and that the 
minimum generation level is 0.5 MW. Since the 
plant heat rate is constant, we may represent the 
price state by the spark spread. We assume the 
spark spread evolves according to the three-
period binomial lattice shown in Figure 4. In 
hour 0, the spark spread is 0 and may go to either 
8 or –2 with equal probability in hour 1. In 
hour 2, possible Price States are –4, 6 and 16.

 Figure 3: Feasible operating state transition

 Figure 4: Spark spread lattice

The values of Fjt(s) and the optimal operating 
policy are shown in Figure 5. Each table in this 

figure shows the optimal dispatch level q, the 
optimal state transitions  for “up” and “down” 
price moves, respectively, and the plant value Fjt 
as a function of the time and price state. The 
plant value over the three periods is 7, 11 or 10.5, 
depending on whether the plant state is initially 
in State 1, 2 or 3.

 Figure 5: Plant value and optimal operating 
policy

A sample calculation is as follows. Beginning at 
the terminal period (hour 2), consider the plant 
value in Price State 16 assuming the plant is on-
line (State 3). Since the spark spread is positive, 
the optimal dispatch level is one MW (i.e., full 
capacity) for current period net revenue of 
1 × 16 = 16. As this is the final period, this is 
also the plant value. In Price State –4, the spark 
spread is negative, so the optimal dispatch level 
in State 3 is only 0.5 MW (i.e., the minimum 
generation level) for a plant value of 
0.5 × (–4) = –2. 

Now consider the plant value in the preceding 
hour (hour 1) in operating State 3, Price 
State –2. Once again the spark spread is negative 
so the optimal dispatch level is 0.5 in the current 
period for net revenue of 0.5 × (–2) = –1. To 
this, we must add the value over the remaining 
stage. From State 3, the feasible state transitions 
are to State 1 or State 3. We must choose the 
optimal transition for each possible price state in 
hour 2 (this is the second maximization in 
Equation 1). If the price state in hour 2 is 6, the 
realized values for States 1 and 3 are 0 and 6, 
respectively; hence the optimal state transition is 
to State 3. On the other hand, if the price state 

Plant Condition

Off-line

On-line

Duration (Hours)

0                     1

1 2

5

Minimum on-time: one hour
Minimum off-time: two hours

0

8

-2

16

6

-4

0.5

0                                 1                            2

0.5

0.5

0.5

0.5

0.5

Time (Hours)

s ′

0

8

-2

16

6

-4

0                                 1                            2

s q s' F
1 0.0 (2,2) 7
2 0.0 (3,2) 11
3 0.5 (3,3) 10.5

s q s' F
1 0.0 (2,2) 0
2 0.0 (3,2) 3
3 0.5 (3,1) 2

s q s' F
1 0.0 (2,2) 0
2 0.0 (3,3) 11
3 0.5 (3,3) 19

s q s' F
1 0.0 (-,-) 0
2 0.0 (-,-) 0
3 0.5 (-,-) -2

s q s' F
1 0.0 (-,-) 0
2 0.0 (-,-) 0
3 1.0 (-,-) 6

s q s' F
1 0.0 (-,-) 0
2 0.0 (-,-) 0
3 1.0 (-,-) 16

Time (Hours)
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Valuation of power generation assets
in hour 2 is –4, the realized values are 0 and –2; 
hence the optimal state transition is to State 1. 
The probability-weighted sum for these two 
possible price states is then 
0.5 × (6) + 0.5 × (0) = 3. When added to the 
net revenue of –1, we obtain a value of 2, as 
reported in the associated table in Figure 5.

Of note is the fact that state transition decisions 
take into account not just immediate net revenue 
but also the opportunity cost in terms of future 
decision-making flexibility; the simple exchange 
option approach does not consider this. Consider 
the optimal state transition from hour 0, 
operating State 3, for example. In hour 1, the 
possible Price States are 8 and –2. It is no surprise 
that the optimal decision is to stay turned on 
(State 3) in the former. What is perhaps 
surprising is that this is also the optimal decision 
in the latter, since the net revenue will 
necessarily be negative in this case. The reason 
for this behavior may be explained by the fact 
that moving to State 1 (off for zero duration), 
rather than State 3, would prevent the plant 
from taking advantage should the spark spread 
become positive in hour 2, due to the minimum 
off-time constraint. This phenomenon, in fact, 
explains why electricity prices have gone to zero 
or even have become negative for short time 
periods in some markets.

Also of interest is the fact that the optimal state 
transition may vary depending on the current 
operating state, even when the possible state 
transitions appear similar. For example, in 
hour 0, should the next hour Price State be –2, 
the optimal decision is to stay off (State 2), if the 
current state is State 2, and to stay on (State 3) if 
the current state is State 3; this, despite the fact 
that turning on the plant is possible in the first 
case and turning off the plant is possible in the 
second. The explanation for this lies in the fact 
that the possible choices in the two cases, though 
similar, are not identical: the off option in the 
first case is to State 2, while the off option in the 
second case is to State 1.

Numerical results
In this section, we use the methodology 
developed above to value a power plant over a 
time horizon of five days. We have assumed that 

the price of input fuel is constant over the 
operating period. Given the much greater 
volatility of electricity prices, the results are 
unlikely to differ significantly over the time 
horizon we consider.

We estimated the parameters for this model 
using hourly electricity spot price data for the 
New England power pool (ISO New England 
2000). Figure 6 shows, for each hour of the day, 
the mean electricity price in the months of 
March and June 2000. Of note is the fact that 
electricity prices are on average lowest during the 
“off-peak” hours from 11:00 p.m to 7:00 a.m. For 
each hour of the day, prices in June are higher 
than those in March, although the pattern is 
different. The highest average prices in March 
are recorded in the evening (7:00–9:00 p.m.) 
driven by domestic lighting and appliance 
requirements, the highest average prices in June 
are around 12:00 p.m., driven by demand for air-
conditioning.

 Figure 6: Mean price of electricity in New 
England power pool, 2000, by hour of day

The estimated model parameters for March are 
= 3,023% and = 2,899, for June, 

= 2,733% and = 2,286; all figures are 
expressed on an annualized basis. Note that the 
extreme volatility of the New England market is 
common to deregulated electricity markets. 
Volatility in equity markets is typically one or 
two orders of magnitude less. The mean 
reversion of prices is also very strong. For this 
model, the “half-life” of deviations, or the 
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Valuation of power generation assets
expected time for a deviation from the mean to 
halve, is . Thus the half-lives of 
deviations in March and June are only 2.1 and 
2.7 hours, respectively.

For the purpose of this example, the price process 
was calibrated to the mean hourly electricity 
curve; in practice, market-quoted forward prices 
should be used where available. Except as noted 
elsewhere, all other parameter values used are 
listed in Table 3.

Table 3: Base case parameter values

In order to determine the importance of different 
operating constraints on plant value, we consider 
a variety of cases summarized in Table 4. Given 
the assumption that operating decisions are made 
at hourly intervals, Case 1 corresponds to having 
no operating constraints. The plant values 
obtained for this case are thus equal to those 
obtained using the exchange option approach. 
Cases 2 through 4 consider the impact of adding 
a minimum off-time, minimum on-time and ramp 
time, respectively. 

Case 5 considers the impact of adding a 
minimum on-time and a response time of one 
hour. Case 6 considers the impact of increasing 
the minimum dispatch level from 100 to 
250 MW in combination with an increased 
minimum on-time. Case 7 considers the impact 
of increasing the minimum off-time, ramp time, 
minimum on-time and response rate together. 
Case 8 is identical to Case 7 except that the 
minimum dispatch level is greater.

Figures 7 and 8 illustrate the optimal operating 
policy boundaries for Cases 4 and 7, respectively, 
based on the electricity process parameters for 
March. The “turn-on” boundary is the spark 
spread above which the plant should be turned 
on, if it is currently off and may be turned on 
(i.e., on-line must be a feasible state transition). 
The “turn-off” boundary is the spark spread 
below which the plant should be turned off, if it is 
currently on and may be turned off.

 Figure 7: Optimal dispatch boundaries
($/MWh), Case 4

Parameter Value

qmin (MW) 100

qmax(MW) 500

H (MMBtu/MWh) 10

Kfix ($/h) 0

PF ($/MMBtu) 2

c1 ($/h) 0

c2 ($/h) 0

c3 (h) 0

2( )ln aE⁄

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Minimum off-time (h) 1 4 1 1 1 1 4 4

Ramp time (h) 0 0 0 2 0 0 2 2

Minimum on-time (h) 1 1 8 1 8 8 8 8

Response time (h) 0 0 0 0 1 0 1 1

Minimum dispatch level (MW) 100 100 100 100 100 250 100 250

Table 4: Summary of test case characteristics
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 Figure 8: Optimal dispatch boundaries 
($/MWh), Case 7

If the plant is currently on, it will tend to be 
uneconomic to turn it off if the current spark 
spread is positive: immediate revenue is foregone 
and a decision to turn off the plant in the next 
hour can always be made if the spark spread 
becomes negative. Thus, the turn-off boundary is 
roughly bounded above by zero. The smaller the 
spark spread is expected to be, the more willing 
an operator should be to turn off the plant than 
otherwise. Thus, the turn-off boundary peaks 
around midnight, since the expected spark 
spread over the next several hours is negative. If 
the spark spread is expected to become positive, 
the operator should be less willing to turn off the 
plant, given the time required to restart it. 
Hence, the troughs in the turn-off boundary 
occur in the hours in which electricity prices are 
highest. This effect will be more pronounced the 
longer it takes to come back on-line once the 
plant shuts down (i.e., the greater the minimum 
off and ramp times): this explains the lower off-
on boundary in Figure 8 (around –$17) than in 
Figure 7 (around –$10).

If the plant is currently off, the decision to turn it 
on is determined by the expected spark spread at 
the time the plant would come on-line, 
accounting for the time required for start-up. 
Hence, if the spark spread is expected to be 
positive, an operator should be willing to turn on 
the plant even if the current spark spread is 
unfavorable. This explains why the turn-on 
boundary is low during peak hours. Conversely, if 
the spark spread is expected to be negative, the 
operator should be less willing to turn on the 

plant even if current prices are high: this explains 
the high turn-on boundary around midnight. 
Furthermore, in this situation, the greater the 
minimum on-time, the greater the turn-on 
boundary peak, since the period in which the 
plant would be forced to be on is longer should 
the spark spread actually become negative. This 
explains why the turn-off boundary peaks at a 
higher value in Figure 8 (around $17) than in 
Figure 7 (around $9).

A key parameter in the analysis is the expected 
spark spread. If one assumes that the hourly 
electricity price pattern is roughly the same in 
each month (only shifted up or down), then, by 
calculating the value of a plant as a function of 
the expected spark spread, one may estimate the 
plant value for any month and for any fuel price 
and heat rate. Figure 9 shows the results for each 
case.

 Figure 9: Plant value versus expected spark 
spread

As expected, the greater the expected spark 
spread, the higher the plant value. In fact, the 
shape of this function is much the same as that of 
a call option as a function of the strike. An 
expected spread of zero corresponds to an option 
that is “at the money.” Of particular note is the 
fact that a plant with zero “intrinsic” value (i.e., 
the expected spark spread is zero) has a 
significant value. 

Figure 10 illustrates the difference between the 
plant value in Case 1 and the other cases. 
Depending on the expected spark spread, the 
differences may be significant. For example, with 
an expected spark spread of –12 $/MWh, the 
plant value in Case 8 is 1.5 $/MWh less than the 
plant value in Case 1—a reduction of 85%.
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 Figure 10: Decrease in plant value (difference 
from Case 1)

In almost all cases, the difference in value is low 
for very low expected spark spreads (for which 
the plant value is low in any case), rises for 
moderately negative spark spreads and declines 
as the spark spread increases. The decline in 
importance of operating constraints for high 
spark spreads may be attributed to the fact that 
the plant is expected to run a greater fraction of 
time. For very high spark spreads, the plant will 
almost surely be run continuously, implying that 
operating constraints assume almost no 
importance. Operating constraints are most 
important for plants that are expected to be 
turned on and off frequently.

Figure 11 shows the plant value for each case as a 
function of the volatility of electricity prices. In 
all cases, increasing volatility leads to higher 
plant values. This is expected: the price of any 
vanilla option increases with higher volatility. 
Comparing Case 1 to the other cases, the impact 
of the operating constraints is also seen to be an 
increasing function of volatility, both in absolute 
and percentage terms. The greatest absolute and 
percentage differences (1.6 $/MWh and 12%, 
respectively) are obtained with Case 8 when 
volatility is in the 5,000% range. Intuitively, 
since operating constraints reduce flexibility to 
respond to price changes, their impact will be 
greater the higher the level of uncertainty 
regarding those prices.

 Figure 11: Plant value versus volatility

Conclusion

In this paper, we describe how real options theory 
may be applied to value power generation assets. 
In particular, the model we develop is capable of 
handling constraints related to minimum on- and 
off-times, ramp times, minimum dispatch levels 
and response rates. Numerical results illustrate 
that these constraints may have a significant 
impact on the power plant’s value, particularly 
for plants that are just slightly “out of the 
money.” The optimal operating policy also may 
be significantly affected.

Real options theory provides a methodology for 
quantifying the value of the operating flexibility 
of real assets and for determining optimal 
operating policies. It offers the potential to 
improve greatly the effectiveness of operating 
decisions and to unlock “hidden” asset value. 
Understanding the sources of asset value and its 
sensitivity to fuel and electricity prices is also 
critical for companies seeking to determine a 
suitable hedging policy through either forward 
sales or other derivatives contracts. As with any 
theory, effective application of the insights 
provided by real options theory requires that 
managers become familiar with its underlying 
assumptions in order to understand both its 
strengths and weaknesses. The pay-off for 
companies that are able to do so is the ability to 
effectively leverage a company’s assets to achieve 
an optimal trade-off between risk and reward.
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