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Abstract

This paper provides an alternative approach to Duffie and Lando [7]
for obtaining a reduced form credit risk model from a structural model.
Duffie and Lando obtain a reduced form model by constructing an econ-
omy where the market sees the manager’s information set plus noise. The
noise makes default a surprise to the market. In contrast, we obtain a
reduced form model by constructing an economy where the market sees
a reduction of the manager’s information set. The reduced information
makes default a surprise to the market. We provide an explicit formula for
the default intensity based on an Azéma martingale, and we use excursion
theory of Brownian motions to price risky debt.

KEYWORDS: Default risk, Azéma martingale, Brownian excursions,
default distribution.

1 Introduction

Reduced form models have become important tools in the risk management of
credit risk (for background references see Jarrow and Yu [10] and Bielecki and
Rutkowski [1]). One reason for this is that they usually provide a better fit
to market data than structural models do (see Jones, Mason, Rosenfeld [12],
Jarrow, van Deventer, Wang [11], Eom, Helwege, Huang [9]). Reduced form
models take a firm’s default process as exogenous with the time of default an
inaccessible stopping time. This implies that the market cannot predict the
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time of default. Yet, managers working within a firm surely know when default
is imminent. From a manager’s perspective, default is an accessible stopping
time (predictable). Usually, in the structural approach default occurs when the
firm’s value, a continuous sample path process, hits a barrier. This formulation
is consistent with the manager’s perspective but inconsistent with reduced form
models.

Duffie and Lando [7] link the two perspectives by introducing noise into the
market’s information set, transforming the manager’s accessible default time
from the structural approach into the market’s inaccessible default time of a
reduced form model. Duffie and Lando postulate that the market can only
observe the firm’s asset value plus noise at equally spaced, discrete time points
(and not continuously). And, when default occurs, the market is immediately
informed. This noise generates the market’s surprise with respect to default,
because the firm could nearly be in default (just about to hit the barrier) and
the market not yet aware of its imminence. Kusuoka [13] extends Duffie and
Lando’s model to continuous time observations of the firm’s asset value plus
noise. Kusuoka’s solution is an application of continuous time filtering theory.

This approach to constructing a reduced form credit model presumes that
the market has the same information set as the firm’s management, but with
noise appended.1 An interpretation is that accounting reports and/or man-
agement press releases either purposefully (e.g. Enron) or inadvertently add
extraneous information that obscures the market’s knowledge of the firm’s asset
value. Management knows the firm’s value (because this knowledge determines
default), but they cannot (or will not) make it known to the market. The
market’s task is to remove this extraneous noise. Although possible in many
situations, this characterization of management’s information versus the mar-
ket’s is not exhaustive. An alternative and equally plausible characterization
is that the market has the same information as a firm’s management, but just
less of it. Accounting reports and/or management press releases provide just a
reduced set of the information that is available.

Consistent with this alternative perspective, we provide a second approach
to the construction of a reduced form credit risk model from a structural model.
In our approach, the firm’s cash flows, a continuous sample path process, provide
the sufficient statistic for default. If the firm’s cash flows remain negative for
an extended period of time, the firm after exhausting both its lines of credit and
easily liquidated assets, defaults. Management observes the firm’s cash flows.
In contrast, the market observes only a very coarse partitioning of the manager’s
information set. The market knows only that the cash flow is negative - the
firm is experiencing financial distress - and the duration of the negative cash
flow event - nothing else. This information structure has default being an

1Filtering theory was originally formulated for electronic signal processing where the

physical problem corresponds to a situation where an electronic signal is received with

noise and the noise needs to be ”filtered” out.
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accessible stopping time for management, but an inaccessible stopping time for
the market, yielding the reduced form credit risk model.

To illustrate the economic concepts involved, this paper concentrates on de-
veloping a specific example to obtain analytic results. The analytic results
solidify intuition and make the economic arguments more transparent. Gen-
eralizations and extensions will be readily apparent once the example is well
understood. It is our hope that this paper will motivate additional research
into this area. Our example provides an explicit representation of the firm’s
default intensity using an Azéma’s martingale (see Emery [8]). To illustrate the
usefulness of this result, we compute the value of a risky zero-coupon bond using
excursion theory of Brownian motions. For another application of excursion
theory to option pricing see Chesney, Jeanblanc-Piqué, Yor [3].

An outline for this paper is as follows. Section 2 presents the structural
model. Section 3 presents the reduced form model, section 4 values a risky
zero-coupon bond in the reduced form model, while section 5 concludes the
paper.

2 The Structural Model

We consider a continuous trading economy with a money market account where
default free zero-coupon bonds are traded. In this economy there is a risky
firm with debt outstanding in the form of zero-coupon bonds. The details of
these traded assets are not needed now, but will be provided later as necessity
dictates. The market for these traded securities is assumed to be arbitrage free,
but not necessarily complete.

We begin with a filtered probability space (Ω,F , (Ft)0≤t≤T ,Q) satisfying the
usual conditions. Time T > 0 is the final date in the model. The probability
Q is an equivalent martingale probability measure under which the normalized
prices of the traded securities follow a martingale. Normalization is by the
value of the money market account. The no arbitrage assumption guarantees
the existence, but not the uniqueness of such a probability measure (see Duffie
[6]).

2.1 Management’s Information

Let X be the cash balances of the firm, normalized by the value of the money
market account, with the following stochastic differential equation:

dXt = σdWt, X0 = x (1)

with x > 0, σ > 0, and where W is a standard Brownian motion on the given
probability space.

The cash balances of the firm are initialized at x > 0 units of the money
market account. One should interpret this quantity as the “target” or “optimal”
cash balances for the firm. An optimal cash balance could exist because if the
firm holds too much cash, it foregoes attractive investment projects and incurs
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increased tax liabilities, while if it has too little cash, it increases the likelihood
of bankruptcy and the occurrence of third party costs (see Brealey and Myers
[2] for related discussion). The firm attempts to maintain cash balances at
this target level, but fluctuations occur due to its operating needs, e.g. meeting
payrolls, paying suppliers, receiving payments from accounts receivable, etc.
However, without loss of generality, to simplify the presentation we assume that
x = 0.

Under the martingale measure, cash balances have no drift term. Under
the empirical measure, however, one would expect that the cash balances should
drift at the spot rate of interest. This is consistent with the firm holding its
cash balances in the money market account and trying to maintain the target
level balance.

The firm’s management observes the firm’s cash balances. Cash balances can
be positive, zero, or negative. Negative cash balances correspond to situations
where payments owed are not paid, and the firm is in financial distress.

2.2 The Default Process

Let Z := {t ∈ [0, T ] : X(t) = 0} denote the times when the firm’s cash balances
hit zero. When the cash balances hit zero, the firm has no cash left for making
current payments owed. The firm is in financial distress. With zero or negative
cash balances, debt payments can only be made by liquidating the firm’s assets
or by accessing bank lines of credit. The firm can exist with negative cash
balances for only a limited period of time. If the cash balances remain negative
for an extended period of time, then default occurs. We now formalize this
default process.

Associated with the zero set, we define the following function:

g(t) := sup{s ≤ t : Xs = 0}.
The random time g(t) corresponds to the last time (before t) that cash balances
hit zero. Let

τα := inf{t > 0 : t− g(t) ≥ α2

2
where Xs < 0 for s ∈ (g(t−), t)}

for some α ∈ R+ be the random time that measures the onset of a potential
default situation for the firm. Formally, τα is the first time that the firm’s cash
balances have continued to be negative for at least α2/2 units of time. The
constant α is a parameter of the default process (that could be estimated from
market data). After time τα, if the firm’s cash balances continue to be negative
and also increase in absolute value, default occurs. We let τd denote the time
of default. We assume that

τd := inf{t > 0 : Xt = 2Xτα , Xs < 0 for s ∈ (τα, t)}.
Default occurs the first time, after τα, that the cash balances remain negative

and double in absolute magnitude. The intuition is that after this magnitude
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of unpaid balances, the lines of credit have been drawn down, and the firm can
no longer meet its debt payments. The doubling in absolute magnitude of the
cash balances prior to default is only for analytic convenience, and it has no
economic content. The generalization of this assumption is a subject for future
research. The above process is what the firm’s management observes.

3 The Reduced Form Model

This section studies the structural model under the market’s information set.
It is shown here that the bankruptcy process, as viewed by the market, follows
a reduced form model where the indicator function of the default time is a point
process with an intensity.

In contrast to the manager’s information, the market does not see the firm’s
cash balances. Instead, the market only knows when the firm has positive cash
balances or when they have negative or zero cash balances. In the latter case,
the market knows the firm is in a financially distressed situation.

We define
sign(x) = {1 if x > 0, − 1 if x ≤ 0}.

Set G̃t := σ{sign(Xs); s ≤ t} and let (Gt)0≤t≤T denote the Q-complete and right
continuous version of the filtration (G̃t)0≤t≤T . (Gt)0≤t≤T is the information set
that the market observes. As seen, the market’s information set is a very coarse
filtering of the manager’s information set. In essence, the market observes when
the market is in financial distress, and the duration of this situation (t− g(t)).

Given this information, the market values the firm’s liabilities by taking
conditional expectations under the martingale measure Q. This valuation is
studied in the next section. For subsequent usage, note that Xt = σWt so that
the sign(Xs) = sign(Ws) and the zero set of X is the same as that of W .

We now derive the intensity for the default time as seen by the market.
First, let

τ = inf{t > τα : Xt = 0}.
Given the strong Markov property of X under Q, and using the reflection prin-
ciple, we see that τ and τd have the same distribution. The analysis in the rest
of this section applies to τ . Let X̃t = 1

σ
2√
π
Xt. Then signs and zero sets of X

and X̃ are the same.
Define Mt := E[X̃t|Gt]. Then, M is the Azéma’s martingale on (Ω, (Gt)0≤t≤T ,Q).2

Its quadratic variation satisfies the following “structure equation”:

d[M, M ]t = dt−Mt−dMt. (2)

Azéma’s martingale is a strong Markov process. For an extensive treatment of
Azéma’s martingale and the structure equation, see Emery [8]. We also have

2Note that Azéma’s martingale has already been used in finance, but in a diferent

context; see Dritschel and Protter [5].
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the following formula for M :

Mt = sign(Xt)
√

2
√

t− gt. (3)

It is easily seen that τ can be equivalently written as

τ = inf{t > 0 : ∆Mt ≥ α}.
Therefore, τ is a jump time of the Azéma’s martingale, hence it’s totally inacces-
sible in the filtration (Gt)0≤t≤T . Also note that τα = inf{t > 0 : Mt− ≤ −α}.

But ∆Mt = −Mt−1[Mt− 6=Mt]. So, τα ≤ τ a.s. Furthermore, τα is a
predictable stopping time which implies Q[τ = τα] = 0. Hence, τα < τ a.s.

Define Nt := 1[t≥τ ]. By the Doob-Meyer decomposition (see, e.g. Protter
[15], pp. 90), there exists a continuous, increasing, and locally natural process,
A, such that N − A is a G-martingale which has only one jump, at τ , and of
size equal to 1.

Theorem 1 τ has a G-intensity, that is A is of the form At =
∫ t∧τ

0
λsds.

Furthermore, λt = 1[t>τα]
1

2[t−g(t−)] for t ∈ [0, τ ].

Proof. Let At = At∧τ . Then

Ht := Nt −At =
∫ t∧τ

0

hsdMs (4)

for some G-predictable process hs since M possesses the predictable represen-
tation property. (This is proved in Emery [8].) Since A is continuous and of
finite variation, and N is a quadratic pure jump semimartingale, we have

[H, H]t = [N,N ]t = Nt. (5)

Also,

[H, H]t =
∫ t∧τ

0

h2
sd[M, M ]s =

∫ t∧τ

0

h2
sds−

∫ t∧τ

0

h2
sMs−dMs, (6)

where the second equality follows from (2). Combining (4), (5) and (6) yields
∫ t∧τ

0

h2
sds−

∫ t∧τ

0

h2
sMs−dMs−At =

∫ t∧τ

0

hsdMs,

which implies
∫ t∧τ

0

h2
sds−At =

∫ t∧τ

0

h2
sMs−dMs +

∫ t∧τ

0

hsdMs. (7)

The left side of the previous expression is continuous. Hence
∫ t∧τ

0

(h2
sMs− + hs)dMs = 0. (8)
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We compute the predictable quadratic variation to get
∫ t∧τ

0

h2
s(hsMs− + 1)2ds = 0. (9)

The Optional Sampling Theorem implies that (N − A)t∧τα = 0, since N = 0
before and at τα. Therefore we get h = 0 on [0, τα]. On the other hand (9) gives
hs = 0 or hs = − 1

Ms−
on [τα, τ ]. But (4) implies hs cannot be identically 0 on

(τα, τ ], and we see that hs = −1[s>τα]
1

Ms−
satisfies (8). Therefore we deduce a

version of H which is given by

Ht = −
∫ t∧τ

0

1[s>τα]
1

Ms−
dMs

and thus H jumps only at τ and its jump size is given by

∆Hτ = −1[τ>τα]
1

Mτ−
∆Mτ = − 1

Mτ−
(−Mτ−) = 1.

Therefore, (7) and (8) together imply

At =
∫ t∧τ

0

h2
sds =

∫ t∧τ

0

1[s≥τα]
1

M2
s−

ds.

This theorem shows that under the market’s information set, default is given
by a totally inaccessible stopping time, generating a reduced form model from
the market’s perspective. We have an explicit representation of the intensity
process as given by λt = 1[t>τα]

1
2[t−g(t−)] . The firm’s default intensity is zero

until time τα is reached. After time τα , the default intensity declines with
the length of time that the firm remains in financial distress (t− g(t−)). The
interpretation is that the longer the firm survives in the state of financial distress,
the less likely it is to default. Presumably, the firm is more likely to recover
and not reach the default magnitude of cash balances given by 2Xτα . With
this intensity, the market can value risky bonds and credit derivatives. This
valuation is discussed in the next section.

4 Valuation of a Risky Zero-coupon Bond

Perhaps one of the most important uses of reduced form credit risk models is
to price risky bonds and credit derivatives. This section studies the pricing
of risky zero-coupon bonds. Let (St)t∈[0,T ] denote the price process of a risky
zero coupon bond issued by this firm that pays $1 at time T if no default occurs
prior to that date, and zero dollars otherwise. Then, under the no arbitrage
assumption, S is given by

St = E

[
exp

(
−

∫ T

t

rudu

)
1[τd>T ]

∣∣∣∣∣Gt

]
,
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where ru is the instantaneous interest rate at time u, and E refers to the Risk
Neutral probability law.

These ”pure” risky zero coupon bonds are the building blocks for pricing
coupon bonds and credit derivatives. Using the distribution equivalence be-
tween τ and τd (discussed in the previous section) we can rewrite this equation
as:

St = E

[
exp

(
−

∫ T

t

rudu

)
1[τ>T ]

∣∣∣∣∣Gt

]
.

Lando [14] shows that this can be written as:

St = E

[
exp

(
−

∫ T

t

(ru + λu)du

)∣∣∣∣∣Gt

]
(10)

where the intensity process λu is as given in Theorem 1.
To facilitate the evaluation of expression (9), we will assume that interest

rates are deterministic. (The inclusion of stochastic interest rates is straight-
forward, see Bielecki and Rutkowski [1].) In this case the valuation formula
becomes

St = exp

(
−

∫ T

t

rudu

)
E

[
exp

(
−

∫ T

t

λudu

)∣∣∣∣∣Gt

]
. (11)

Therefore, the price of a risky zero coupon bond at time t = 0 is given by
evaluating the following expectation:

E

[
exp

(
−

∫ T

0

λudu

)]
. (12)

The rest of this section is devoted to the computation of this expectation. Define
Lα := τ−gτα . Lα is the length of the first excursion of Brownian motion below
zero exceeding length α2

2 .

E

[
exp

(
−

∫ T

t

λudu

)∣∣∣∣∣Gt

]

= 1[t<τ ]1[t≥τα]E

[
exp

(
−

∫ T

t

λudu

)∣∣∣∣∣Gt

]

+1[t<τα]E

[
exp

(
−

∫ T

t

λudu

)∣∣∣∣∣Gt

]

= 1[t<τ ]1[t≥τα]

√
t− gtE

[
1√

τ − gt
1[τ≤T ]

∣∣∣∣Gt

]
(13)

+1[t<τ ]1[t≥τα]

√
t− gt√
T − gt

E
[
1[τ>T ]

∣∣Gt

]
(14)
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+1[t<τα]
α√
2
E

[
1√

τ − gτα

1[τ≤T ]

∣∣∣∣Gt

]
(15)

+1[t<τα]
α√
2
E

[
1√

T − gτα

1[τα≤T<τ ]

∣∣∣∣∣Gt

]
(16)

+1[t<τα]E
[
1[τα>T ]

∣∣Gt

]
(17)

We next evaluate expressions (13)-(17). The distribution of the length of an
excursion conditional on the age of the excursion is given in Chung [4].

Conditional expectation in (13) on the event [τα ≤ t < τ ]:

E
[

1√
τ − gt

1[τ≤T ]

∣∣∣∣Gt

]
= E

[
1√
Lα

1[Lα≤T−gt]

∣∣∣∣Gt

]

=
∫ T−gt

t−gt

1
2
√

l

√
t− gt

l3
dl

=
√

t− gt

2

(
1

t− gt
− 1

T − gt

)
.

Conditional expectation in (14) on the event [τα ≤ t < τ ]:

E
[
1[τ>T ]

∣∣Gt

]
= Q [T − gt < Lα| Gt]

=
∫ ∞

T−gt

1
2

√
t− gt

l3
dl

=
√

t− gt

T − gt
.

Conditional expectation in (15) on the event [τα > t]:

E
[

1√
τ − gτα

1[τ≤T ]

∣∣∣∣Gt

]
= E

[
E

[
1√

τ − gτα

1[τ≤T ]

∣∣∣∣Gτα

]∣∣∣∣Gt

]

= E
[
1[T≥τα]

(
1

α
√

2
− α

2
√

2
1

T − gτα

)∣∣∣∣Gt

]
.

Conditional expectation in (16) on the event [τα > t]:

E

[
1√

T − gτα

1[τα≤T<τ ]

∣∣∣∣∣Gt

]
= E

[
E

[
1√

T − gτα

1[τα≤T<τ ]

∣∣∣∣∣Gτα

]∣∣∣∣∣Gt

]

=
α√
2
E

[
1

T − gτα

1[τα≤T ]

∣∣∣∣Gt

]
.

In order to get the price, St, we need to obtain the law of τα on the event [t < τα]
conditional on Gt. To find the Laplace transform of this density we introduce
the following martingale as in Chesney, Jeanblanc-Picqué, Yor [3]

Nt := Ψ(−λµt∧τα) exp
(
−λ2

2
(t ∧ τα)

)
,

9



where µt = Mt√
2

and Ψ(z) =
∫∞
0

x exp
(
zx− x2

2

)
dx. Using the optional stop-

ping theorem, we obtain

E
[
Ψ(−λµτα) exp

(
−λ2

2
(τα)

)∣∣∣∣Gt

]
= Ψ(−λµt∧τα) exp

(
−λ2

2
(t ∧ τα)

)

which in turn implies

1[t>τα]E
[
exp

(
−λ2

2
τα

)∣∣∣∣Gt

]
= 1[t>τα]

Ψ(−λµt) exp
(
−λ2

2 t
)

Ψ(λ α√
2
)

.

Using relatively standard software, one can invert this Laplace transform
and compute the expectations given in expressions (13)-(17).

For time 0, using expressions (13)-(17) in (11) gives:

S0 = exp

(
−

∫ T

0

rudu

)(
1− 1

2

(
Q [τα ≤ T ]− α2

2
E

[
1

T − gτα

1[τα≤T ]

]))
.

(18)
This is the price of the risky zero coupon bond at time 0. The interpretation
of the last term in this expression is important. Default occurs not at time τα,
but at time τ . The default time τ is, therefore, less likely than the hitting time
τα. The probability Q [τα ≤ T ] is reduced to account for this difference.

Unfortunately, the law of τα is only known through its Laplace transform
which is very difficult to invert analytically (see Chesney, Jeanblanc-Picqué, Yor
[3] in this respect). Chesney, et al. gives the following formula.

E
[
exp

(
−λ2

2
τα

)]
=

1
Ψ(λ α√

2
)
.

Inverting this Laplace transform yields the law for τα, and given the law for τα,
expression (18) is easily computed.

5 Conclusion

This paper provides an alternative method for generating reduced form credit
risk models from structural models. The difference from Duffie and Lando [7] is
that instead of using filtering theory to go from the manager’s information to the
market’s as in Duffie and Lando, we use a reduction of the manager’s information
set. This modification is both conceptually and mathematically a different
approach to the topic. Indeed, the perspective from filtering theory is that
the market’s information set is the same as the manager’s, but with additional
noise included. The perspective from reducing the manager’s information set
is that the market’s information set is the same as the manager’s, but the
market just knows less of it. Future research agendas include investigating
more complex structural models than those used herein, and more complex
information reductions.
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